\documentclass[11pt]{article} \usepackage[pdftex]{graphicx} % to include graphics \pdfcompresslevel=9 \usepackage{thumbpdf} \usepackage{amssymb} \usepackage{amsmath} %\usepackage{amscd} \usepackage{amsthm} \usepackage[all]{xy} %\usepackage{alltt} \usepackage{fancyhdr} %\usepackage[mathscr]{eucal} %%\usepackage{euler} \usepackage[pagebackref=true,colorlinks=true,pdftitle=EH-Exercises]{hyperref} \usepackage{paralist} \usepackage{pdfsync} \usepackage{lipsum} \newtheorem{exercise}{Exercise}[section] \newcommand{\Spec}{\operatorname{Spec}} \newcommand{\cmplx}{\mathbb{C}} \newcommand{\ints}{\mathbb{Z}} \title{Brief Article} \author{The Author} \date{} \begin{document} \maketitle \lipsum*{1} \begin{exercise}\label{ExI.5} \begin{compactenum}[(a) ] \item\label{ExI.5.a} Let $X$ bet the two-element set $\{0,1\}$, and make $X$ a topological space with the discrete topology. A sheaf on $X$ is thus a collection of four sets with certain maps between them; describe the relations among these objects. ($X$ is actually $\Spec R$ for some rings $R$; can you find one?) \item\label{ExI.5.b} Do the same in the case where the topology of $X=\{0,1\}$ has as open sets only $\emptyset,\{0\}$, and $\{0,1\}$. Again, this space may be realized as $\Spec R$. \end{compactenum} \begin{proof} Ad (a): A sheaf on the discrete space $X$ consists of sets (objects in a category) $A_{e},A_{0},A_{1},A_{X}$, with maps (from that category) $$\xymatrix{ A_{e}\ar[r]\ar[d]\ar[dr]&A_{0}\ar[d]\\ A_{1}\ar[r]&A_{X} }$$ making the diagram commute. We have seen a space $\Spec R$ of the form $X$, in Ex.\ref{ExI.1}.\ref{ExI.1.c}, namely the ring of dual numbers over $\cmplx$. Ad (b): In this case, the diagram in question is $$\xymatrix{ A_{e}\ar[dr]\ar[d]\\ A_{0}\ar[r]&A_{X} }$$ and $X$ is (isomorphic to) $\Spec R$, with $R=K[x]_{(x)}$, from Ex. \ref{ExI.4}\ref{ExI.4.b}. \end{proof} \end{exercise} \lipsum*{2} Where in the world is Ex. \ref{ExI.5}? \end{document}