
Contents

List of Figures ii

1 Is Aquamacs Emacs? 1
1.1 Why bother with Emacs? . 1

Awesome Emacs Power . 2

i

List of Figures

1 Izzy Whizzy, Let’s Get Bizzy . 1
2 Mode . 2
3 regexp query . 2
4 regexp replace . 2

ii

Aquamacs - An Appreciation

A slightly over-complicated document in LATEX to explore gotchas in using the lwarp package to prepare documents for
automatic re-purposing for the web and e-books.

27-Nov-2020 18:06

1 Is Aquamacs Emacs?

Aquamacs is not a fork of Emacs. It is Emacs. What makes it
different is ready availability of common macOS keyboard short-
cuts, menu conventions and mouse operations. It is easier to get
real work done earlier in your GNU Emacs learning phase, which
is a life’s work.

macOS haswaved amagicwand tomake this possible. Almost
entirely by accident.

Figure 1: Izzy Whizzy, Let’s Get Bizzy

Because GNU Emacs is venerable open source, the⌘makes
no appearance there. This happy disjunction is a gift for Aquamacs
beginners. When recalling Emacs commands is too overwhelming
for something you can do natively in macOS , just do it the� way.

Traditional Emacs knows nothing of the macOS menu bar.
Aquamacs Emacs makes great use of it.

Remember that macOS is officially Unix. There are lots of
Unix commands that match those of Emacs. Inside the Terminal

app many shortcuts display their common unix and Emacs an-
cestry despite the famous “GNU’s Not Unix” bon mot by Richard
Stallman in 1983.

A few Emacs commands have found their way into Apple’s own
text handling frameworks. Ctrl-a, Ctrl-e, Ctrl-b, Ctrl-f, Ctrl-d and
Ctrl-t do exactly the same job in Emacs.

1.1 Why bother with Emacs?

You probably use several applications that handle text – Finder,
TextEdit, Word, InDesign, Excel, Mail, Terminal, Xcode, LATEX,
Safari, Usenapp …

Most of the biggies in that list handle text in their own private
“Integrated Development Environment”. Each does many of the
same jobs in different ways to the others. Sometimes it is the big
hitters sucking you into their eco-systems. Sometimes it is a mis-
taken goal of Windows compatibility. Other than those, it must be
a (S)IDE salad. One has to invest a lot of time learning all those
IDE’s different ways to do the same basic job.

Does Aquamacs offer a better return on that investment? The
answer is a guarded maybe. If you work exclusively in a narrow
subject area like vector graphic art, and your boss says it has to
be Illustrator, then Emacs is not for you. If you freelance, and
switch between Affinity Designer and Adobe Illustrator you might
be tempted to look at Aquamacs. If you are authoring books, you
might want to flick between Word, Libre Office, InDesign, Affinity

1

Publisher and TEXshop. Read on! If you are developing software
solely in Swift, for the present, stick with Xcode. For any other set
of programming languages you should already be using Emacs in
one flavour or another. Read on!

For the rest of us, – that potter about with mail, usenet and
social media and the odd letter for snail mail, the question can be
answered with another question. Why not? Aquamacs is fun, and
with more or less every macOS text trick ready and waiting, all
you need is Aquamacs, its ever present *scratch* buffer,⌘C and
⌘V.

Copy or author your text in *scratch*, fix it with the tricks you
know or are still learning, and copy paste into the app that wanted
it done its way. You have all that Emacs power ready when you
need it.

Awesome Emacs Power

Aquamacs is Emacs, so it does not stop there. It turns the IDE
salad on its head.

Figure 2: Mode

Modes make Emacs an almost universal development envi-
ronment. If you develop software in more than one language,
and/or create documentation in LATEX or for the web, for each of
the modes it offers – operations such as completion, indentation,
testing, formatting, highlighting – are tailored to the way each ‘lan-
guage’ expects. The list in the screenshot above shows the common
modes. Quite a few can be added.

The screenshot shows a bit of the Mac menu bar in LATEX mode.
It was grabbed on the fly as this piece was being written. Under-
neath those menu items are submenus with their Emacs equivalent
key bindings. What an excellent crutch for learning how to keep

your fingers on the keyboard! Every mode has its specific keybind-
ings, but everything is as consistent as it possibly can be.

An Analogy

I recently changed cars. I sold the trusty 1998 Audi S8 that had
been my daily driver for almost 20 years and bought a newer but
still old S8 in its place. This one has a 5.2 liter V10 engine and more
electronic toys than anyone needs.

My excuse? I was getting older quicker than my car, and I
wanted, not needed, to get a really truly monster before I got too
old to enjoy it safely. Themechanicwho looks after our cars grinned
at me and said “There are no pockets in a shroud”.

I walk up with its keyfob in my pocket; the door opens at first
grab. I climb in with my foot on the brake and press start. I press
the handbrake off button, select drive and mosey out to the gate,
closing the door and buckling in. It then wafts me gently about as
a proper dictatormobile should. It is very Macintosh-like. It even
has a touch ID that does not work all the time.

But, if I move the gear selector to s, and the air suspension to
dynamic all four wheels scrabble for grip with anything more than
a gentle stab on the loud pedal, the ride becomes rock hard and I
get hugely rewarded for braking late but smoothly and taking the
proper line through corners. A complete personality change for
the car and the idiot behind the wheel.

This is so like leaving the Mac’s comfort zone for the joy of
Emacs. Consider the difference between ⌘F and C-M % which is
near the esoteric end of Emacs search commands.

It invokes query-replace-regexp. Let me give you an example
of a slightly scary simple one. It asks for two strings of characters.
The first is what to look for. The second is how to replace it with
something related.

Figure 3: regexp query

Figure 4: regexp replace

And pray – what does it do? It repairs improperly formed pairs
of curly double quote marks. It does so by looking for any dou-
ble quote mark –it is surprising how many variations there are–,
then anything but, until there is another double quote, remember-
ing what was between those two bookends. The replacement is
a pair of grave accent characters followed by what was originally
between the opening and closing double quotes and then a pair
of apostrophe characters. That is the canonical way of setting a
double-quoted string in LATEX.

A few remarks are in order.

As anybody who has ever written a computer program can
see, there is a glaring bug. What if there were an unpaired
double quote, as in 27” iMac? That is something not easy to
fix in any language. Do you look right to the end of a long
document to determine whether you are still looking for a

2

matching closing quote? Or perhaps some clever algorithm
that decides earlier based on what was inside and outside
quoted passages? The practical answer lies in the full name
of the Emacs command – Interactive query-replace-regexp.
It shows you each match and waits for you tell it whether to
do it or not with a single character response. One of which
is !, meaning do the lot. Emacs has far more clever undo
than anything else. It is easy to see when it is matching the
wrong way and stop, then undo back to the first mistake.
Much quicker than writing a bug-free program in some
other language, including Emacs own internal language
elisp.
Regexps are rules for searching for patterns. In the real
world there are many subtly different regular expression im-
plementations. This is why Emacs for everything is better
than dealing with more than one Integrated Development
Environment.
The regexp examples above are presented as screengrabbed
images. I did this because the LATEX source is being used
to automatically produce web pages and e-book versions.
html would make a mess of them, and automatic e-book
conversion would too.

Elisp Command Function

⌘N new-frame-with-new-

scratch

Create new buffer

⌘O find-file-other-frame Open a file

⌘W close-window Close selected window

deleting buffer

⌘⇧S write-file Save as

⌘A mark-whole-buffer Select all text

⌘V cua-paste (yank) Paste text

⌘C clipboard-kill-ring-save Copy test

⌘⌥X aquamacs-keyboard-kill-

secondary

Cut text from secondary

selection

⌘S save-buffer Save file

⌘L goto-line Go to specified line

⌘F isearch-forward Search

⌘G isearch-repeat-forward Repeat search

⌘E aquamacs-use-

selection-for find

Use selected text for next

search

⌘; spellcheck-now Jump to next spelling er-

ror

⌘M iconify-or-deiconify-

frame

Minimise window to the

dock

⌘. keyboard-quit Keyboard quit

⌘, customize Show customisation

buffer

⌘’ (un)comment-region-or-

line

Comment out or in the

current line or region if

marked

⌘⌫ kill-whole-visual-line Deletes the current line

⌘⌦ kill-visual-line Deletes the remainder of

the current line

⌘Q aquamacs-save-buffers-

kill-emacs

Save file, exit program

⌘Z undo Undo

⌘⇧Z redo Redo

3

	List of Figures
	Is Aquamacs Emacs?
	Why bother with Emacs?
	Awesome Emacs Power

