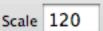


from 0.

Larger-in-size



Page 4

of 15

closer to 0 and the signed number that is larger-in-size is the one farther

larger-in-size
extent
coded
brackets, square
[]
finite number
zero
infinite

EXAMPLE 6. Given the signed numbers -6 and +3, we have Farther from 0 Closer to 0

and so, since -6 is farther from 0, -6 is larger-in-size and since +3 is closer to 0, +3 is smaller-in-size.

Smaller-in-size

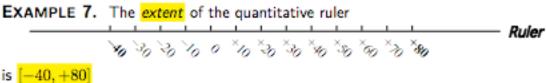
NOTE. The symbols <, \leq , >, \geq , and = all refer to the comparison of the signed numbers *themselves*.

There are no symbols for the comparison of signed numbers according to their size 2.

1.4 Finite Numbers, Infinite Numbers, and Infinitesimal Numbers

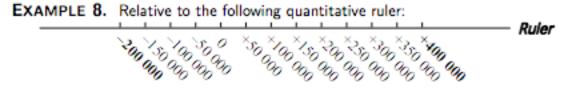
There are two aspects to quantitative rulers.

 The extent of a quantitative ruler is specified by the smallest label together with the largest label. Extents will be coded between square brackets [,]



From the point of view of the extent, there are two kinds of numbers:

- The finite numbers which are the numbers that fall within the extent
 of the quantitative ruler. With the exception of 0 which is not a finite
 number but just ... zero. (We will discuss zero in Section 1.7 Zero.)
- The infinite numbers which are the numbers that fall beyond the extent of the quantitative ruler.



²Educologists will surely wonder why not use absolute values. The reason of course is that absolute values is a concept on top of signed numbers whereas size is a concept that is part of signed numbers.