Math 135 Tufts University Fall, 2019

SUPPLEMENTARY NOTES:
THE WEIERSTRASS M-TEST AND POWER SERIES

Recall that the Taylor series at « = a of a function f(x) is the series of
polynomials
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where f*)(a) is the k' derivative of f(z)' at z = a. The partial sums of
the Taylor series are the Taylor polynomials of f(z) at z = a.

In this note, we study the convergence of series of this form:
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Definition 1. A power series is a series of polynomials of the form?

Z cr(x — a)r.
k=0

The series is centered at x = a.

We will for the most part focus on series centered at x =0

o
E Ck.%'k;
k=0

at the end we will use the substitution x — (2 — a) to obtain related results
for power series centered elsewhere.
Our goal is to prove and explain the following picture:

e The set of points where the series Y p- cpx® converges is an interval
I, called the interval of convergence of the series;

o [ consists of the singleton {0} = [0, 0], the whole line (—o00, c0), or an
interval (open, closed, or half-open) whose endpoints are £R, where
0 < R <oo;wecall R (0 <R < o0) the radius of convergence of
the series

e the convergence of the series is absolute at any point interior to the
interval of convergence, and uniform on any sequentially compact
interval contained in I.
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17 (g) is the “undifferentiated ” function f(a) and k! is the factorial of k, with 0! = 1

2 We have rendered the starting index £ = 0 to underline that a power series can have a
“constant” term, and it is convenient to have the index run over the non-negative integers,
despite Fitzpatrick’s convention of always using the natural numbers to index a sequence.
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1. THE WEIERSTRASS M-TEST

The following analogue of the Comparison Test for numerical series is a
very useful tool for proving the uniform convergence of a series of functions.

Theorem 2 (Weierstrass M-test). Suppose a sequence of functions fr: D—R,
k=0,1,..., satisfies the estimates

|fu(z)| < My, k=0,1,..., forallz € D
where the constants My, > 0 satisfy

[o@)
Z My, < 0.
k=0

Then the series

> fulx)
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converges uniformly on D.

Proof. Since the sum Y~ M}, converges, its partial sums Sy = Zszo M,
form a Cauchy sequence:

Ve>0,AN eN.o>.m,n> N = |S,, — S| < e.

For N < n < m, |Sy — Sul = 3L, 11 My; the partial sums of the series
Y oreo fr(z) satisfy, for N <n <m,

S-S @ =Y i@l < Y h@li< Y Mio<e,
k=0 k=0 k=n+1 k=n+1 k=n-+1

showing that the sequence of partial sums of > 72 fi(z) is uniformly Cauchy
on D, and hence the series is uniformly convergent on D. ]

2. POWER SERIES

2.1. Interval of Convergence.

Theorem 3. The power series Y oo cpx® always converges at x = 0; if it
converges at x = b # 0, then the series converges absolutely at any point x
in the open interval (— |b|, |b]); furthermore, for any r such that 0 < r < |b],
the series converges uniformly on the closed interval [—r,r].

Proof. That the series converges at x = 0 follows from the fact that every
term beyond coz® = ¢ is zero.

If> 0, cb* converges, then by the Divergence Test the sequence {ckbk}
converges (to 0) and hence is bounded: let C' be an upper bound for the
absolute values of these terms:

‘ckbk‘ <Chorall k=0,1,--- .
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Suppose |z| < r < |b|; then

(] <ol () <0 ()"

k k
Setting My, = C (ﬁ) and noting that the series > 22 C (ﬁ) is a geo-
metric series with ratio less than 1, it follows from the Weierstrass M-Test
that > 77 cpx® converges absolutely and uniformly on [—r, 7). O

CLT

!

Remark 4. An interval can be characterized as a set S C R with the prop-
erty that if x,y € S and x < z <y then z € S.

Combining Theorem 3 and Remark 4 we obtain

Corollary 5. The convergence set of a power series centered at x =0

o
I= {x eR| chxk converges}

k=0

is an interval (open or closed or half-open). Let R = sup I. The possibilities
are

R =0: I ={0} =10,0]: The series converges at x = 0 and diverges if
x # 0.

0 < R<oo: I is an interval with finite endpoints =R, The series
converges absolutely at every point x with |x| < r and diverges at
every point x with |x| > R; convergence is uniform on [—r,r| for
every r < R.

Convergence at the two endpoints x = +R is not determined:
depending on the series, it can converge conditionally, converge ab-
solutely, or diverge at x = R and (independently) at x = —R.

R = oo: The series converges absolutely at every x € R, uniformly on
any bounded interval.

The number R = sup I is called the radius of convergence of the series
S, ekt

2.2. Finding the interval of convergence (OPTIONAL). An appli-
cation of the Ratio Test can in many cases give us a way to determine the
radius of convergence of a power series.

Proposition 6. Suppose the coefficients of the power series Y, cpx® sat-

isfy

Chi1
Ck

Then the radius of convergence of the series is R = %, where we mean
R:%:oo ifp=0and R= -+ =0 if p = 0.

o0

Proof. The series always converges at © = 0, as noted earlier.
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If 0 < p < oo, then for any = # 0 we apply the Ratio Test to the numerical
series Y 72 et

k+1

Ck+1% Ck+1| |

Ck
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ek

By the ratio test, the series converges if |%| < 1 (i.e., |#| < R) and diverges
if |%] > 1 (i.e., |z] > R).

If p = 0, the ratio test tells us that the series converges for all z € R,
since the ratio goes to 0 < 1. If p = oo, for any = # 0 the terms of the series
diverge to infinity. O

There are several more sophisticated tests that can be used to find the
radius of convergence when Proposition 6 does not apply. We state them
without proof:

Root Test: If W — p then the radius of convergence is R = % as
before.

limit superior: If the ratios | %+!

o do not converge, we can replace their

limit with the following:

Definition 7. Suppose {ry} is a non-negative sequence. Given K € N, let
sk =sup{rg|k > K}.

This is a decreasing sequence, since we are taking suprema over smaller
sets. Since we assume ri, > 0 for all k the sequence {si} is bounded and
monotone, hence converges. Define the limit superior of {ry}as
limsupri = lim sk
; PTk LS K
Then if we define p to be the the limit superior instead of the limit of
the ratios in the Ratio Test, we get a version which (by tweaking our argu-
ments in the proof of Proposition 6) always yields a value for the radius of

convergence: if

1
aRZ*
P

then the series always converges if |x| < R and diverges if |z| > R.

c
p = limsup el

2.3. General power series. Our discussion has focused on power series
centered at x =0, > 7, cxxz®. To handle a power series centered at = = a
when a # 0, >_72 ck(z — a)¥, we can make the substitution y = = — a to
obtain a new power series, » - cpy®, centered at y = 0. We leave it to you
to verify that applying Corollary 5 to this new series leads to the following
generalization to arbitrary power series:

Theorem 8. The convergence set of a power series centered at x = a

o0
I= {a: eR| ch(x —a)k converges}
4
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is an interval (open or closed or half-open) whose midpoint is a.
The possibilities are

R =0: I = {a} = [a,a]: The series converges at x = a and diverges
if x # a.

0 < R < oo: I is an interval with finite endpoints a + R, The se-
ries converges absolutely at every point x with |z —a| < r and di-
verges at every point x with |z — al > R; convergence is uniform on
[a —r,a+ 7] for every r < R.

Convergence at the two endpoints, x = a £ R, is not determined:
depending on the series, it can converge conditionally, converge ab-
solutely, or diverge at x = a + R and (independently) at x = a — R.

R = oo: The series converges absolutely at every x € R, uniformly on
any bounded interval.

The number R = sup [ is called the radius of convergence of the series
S22 ck(z — a)*. Proposition 6 and its variants apply verbatim for finding
this radius.
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