\documentclass[11pt]{amsart} %\usepackage{geometry} % See geometry.pdf to learn the layout options. There are lots. %\geometry{letterpaper} % ... or a4paper or a5paper or ... %%\geometry{landscape} % Activate for for rotated page geometry %%\usepackage[parfill]{parskip} % Activate to begin paragraphs with an empty line rather than an indent %\usepackage{graphicx} \usepackage{graphicx} \usepackage{amssymb} \usepackage[colorlinks, backref]{hyperref} \usepackage{alphamacros} \usepackage{analysismacros} \usepackage{colormacros} \usepackage{formatmacros} \usepackage{mymathmacros} \usepackage{refmacros} \newcommand{\Sof}[1]{\ensuremath{S\left(#1\right)}} %\usepackage{epstopdf} %\DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `dirname #1`/`basename #1 .tif`.png} \title{Supplementary Notes:\\The Weierstrass $M$-test and Power Series% \footnote{ \copyright 2019 L. Tu, Z. Nitecki and Tufts University } } % %\author{Loring Tu and Zbigniew Nitecki}% %\footnote{ %\copyright 2019 L. Tu, Z. Nitecki and Tufts University %} %% \date{} % Activate to display a given date or no date \usepackage{lastpage} \usepackage{fancyhdr} % this defines the header/footer style on the first page \fancypagestyle{firstpagestyle}{% \rhead{Fall, 2019} % right header on first page \lhead{Math 135} % left header on first page \chead{Tufts University} % center header on first page %\footnote{ %\copyright 2019 L. Tu, Z. Nitecki and Tufts University %} %% \renewcommand{\headrulewidth}{0pt} \cfoot{\thepage\ of \pageref{LastPage}} % center footer on first page } % this defines the header/footer on a "fancy" page %\cfoot{\thepage\ of \pageref{LastPage}} % center footer on normal page \lhead{Math 135} % left header on normal page \chead{M-Test and Power Series} % center header on normal page \rhead{Fall 2019} % right header on normal page % this makes the "normal" page style the "fancy" style \pagestyle{fancy} % ______________________________________________________________________________ \begin{document} \maketitle %\section{} %\subsection{} \thispagestyle{firstpagestyle} % header/footer style the same as a normal page %\begin{center} %Math 135 \hfill Real Analysis I \hfill Fall 2019 \\ %\phantom{Prof.~L.~Tu}\hfill \large\textbf{The Weierstrass $M$-test and Power Series}% %\footnote{ %\copyright 2019 L. Tu, Z. Nitecki and Tufts University %}% % \hfil\ \phantom{Prof.~L.~Tu} %\end{center} \bigskip Recall that the \textbf{Taylor series} at $x=a$ of a function \fofx{} is the series of polynomials \begin{multline*} \sum_{k=\textcolor{red}{0}}^{\infty}\frac{\fpnof{k}{a}}{k!}(x-a)^{k}=\\ \fof{a}+\fpof{a}(x-a)+\frac{\fppof{a}}{2!}(x-a)^{2}+\cdots+\frac{\fpnof{n}{a}}{n!}(x-a)^{n}+\cdots \end{multline*} where \fpnof{k}{a} is the \kth{} derivative of \fofx{}% \footnote{\fpnof{0}{a} is the ``undifferentiated '' function \fof{a} and $k!$ is the factorial of $k$, with $0!=1$} at $x=a$. The partial sums of the Taylor series are the \textbf{Taylor polynomials} of \fofx{} at $x=a$. In this note, we study the convergence of series of this form: \begin{definition}\label{dfn:powers} A \textbf{power series} is a series of polynomials of the form% \footnote{ We have rendered the starting index $k=\textcolor{red}{0}$ to underline that a power series can have a ``constant'' term, and it is convenient to have the index run over the non-negative integers, despite Fitzpatrick's convention of always using the natural numbers to index a sequence. } \begin{equation*} \sum_{k=\textcolor{red}{0}}^{\infty}\cs{k}(x-a)^{k}. \end{equation*} The series is \textbf{centered at $x=a$}. \end{definition} We will for the most part focus on series centered at $x=0$ \begin{equation*} \sum_{k=\textcolor{red}{0}}^{\infty}\cs{k}x^{k}; \end{equation*} at the end we will use the substitution $x\mapsto(x-a)$ to obtain related results for power series centered elsewhere. Our goal is to prove and explain the following picture: \begin{itemize} \item The set of points where the series $\sum_{k=\textcolor{red}{0}}^{\infty}\cs{k}x^{k}$ converges is an interval $I$, called the \textbf{interval of convergence} of the series; \item $I$ consists of the singleton $\single{0}=\clint{0}{0}$, the whole line \opint{-\infty}{\infty}, or an interval (open, closed, or half-open) whose endpoints are $\pm R$, where $00$ satisfy \begin{equation*} \infsum{k}{0}{\Ms{k}}<\infty. \end{equation*} Then the series \begin{equation*} \infsum{k}{0}{\fsof{k}{x}} \end{equation*} converges uniformly on $D$. \end{theorem} \begin{proof} Since the sum \infsum{k}{0}{\Ms{k}} converges, its partial sums $\Ss{N}=\finsum{k}{0}{N}{\Ms{k}}$ form a Cauchy sequence: \begin{equation*} \forall\epsgo,\exists N\in\Nat \suchthat m,n\geq N\imply \abs{\Ss{m}-\Ss{n}}<\eps. \end{equation*} For $N\leq nR$; convergence is uniform on \clint{-r}{r} for every $rR$. Convergence at the two endpoints $x=\pm R$ is not determined: depending on the series, it can converge conditionally, converge absolutely, or diverge at $x=R$ and (independently) at $x=-R$. \item[$\boldsymbol{R=\infty}$] The series converges absolutely at every $x\in \Reals$, uniformly on any bounded interval. \end{description} The number $R=\sup I$ is called the \textbf{radius of convergence} of the series \infsum{k}{\textcolor{red}{0}}{\cs{k}x^{k}}. \end{corollary} %\begin{proof} % %\end{proof} \subsection{Finding the interval of convergence (OPTIONAL)} An application of the Ratio Test can in many cases give us a way to determine the radius of convergence of a power series. \begin{prop}\label{prop:FindR} Suppose the coefficients of the power series \infsum{k}{\textcolor{red}{0}}{\cs{k}x^{k}} satisfy \begin{equation*} \abs{\frac{\cs{k+1}}{\cs{k}}}\to\rho. \end{equation*} Then the radius of convergence of the series is $R=\recip{\rho}$, where we mean $R=\recip{0}=\infty$ if $\rho=0$ and $R=\recip{\infty}=0$ if $\rho=\infty$. \end{prop} \begin{proof} The series always converges at $x=0$, as noted earlier. If $0<\rho<\infty$, then for any $x\neq0$ we apply the Ratio Test to the numerical series \infsum{k}{\textcolor{red}{0}}{\cs{k}x^{k}}: \begin{equation*} \abs{\frac{\cs{k+1}x^{k+1}}{\cs{k}x^{k}}}=\abs{\frac{\cs{k+1}}{\cs{k}}}\abs{\frac{x^{k+1}}{x^{k}}} \to \rho\abs{x}=\abs{\frac{x}{R}} \end{equation*} By the ratio test, the series converges if $\abs{\frac{x}{R}}<1$ (\ie{} $\abs{x}1$ (\ie{} $\abs{x}>R$). If $\rho=0$, the ratio test tells us that the series converges for all $x\in\Reals$, since the ratio goes to $0<1$. If $\rho=\infty$, for any $x\neq 0$ the terms of the series diverge to infinity. \end{proof} %\begin{remark}\label{rmk:altTests} There are several more sophisticated tests that can be used to find the radius of convergence when \refer{prop}{FindR} does not apply. We state them without proof: % \begin{description} \textbf{Root Test:} If $\sqrt[k]{\abs{\cs{k}}}\to\rho$ then the radius of convergence is $R=\recip{\rho}$ as before. \textbf{limit superior:} If the ratios $\abs{\frac{\cs{k+1}}{\cs{k}}}$ do not converge, we can replace their limit with the following: % \textbf{limit superior}, defined as follows \begin{definition}\label{dfn:limsup} Suppose \single{\rs{k}} is a non-negative sequence. Given $K\in\Nat$, let \begin{equation*} \ssub{K}=\sup\setbld{\rs{k}}{k\geq K}. \end{equation*} This is a decreasing sequence, since we are taking suprema over smaller sets. Since we assume $\rs{k}\geq 0$ for all $k$ the sequence \single{\ssub{K}} is bounded and monotone, hence converges. Define the \textbf{limit superior} of \single{\rs{k}}as \begin{equation*} \limsup_{k} \rs{k}=\lim_{K}\ssub{K}. \end{equation*} \end{definition} Then if we define $\rho$ to be the the limit superior instead of the limit of the ratios in the Ratio Test, we get a version which (by tweaking our arguments in the proof of \refer{prop}{FindR}) always yields a value for the radius of convergence: if \begin{equation*} \rho=\limsup\abs{\frac{\cs{k+1}}{\cs{k}}},\ R=\recip{\rho} \end{equation*} then the series always converges if $\abs{x}R$. % \end{description} %\end{remark} \subsection{General power series} Our discussion has focused on power series centered at $x=0$, \infsum{k}{\textcolor{red}{0}}{\cs{k}x^{k}}. To handle a power series centered at $x=a$ when $a\neq0$, \infsum{k}{\textcolor{red}{0}}{\cs{k}(x-a)^{k}}, we can make the substitution $y=x-a$ to obtain a new power series, \infsum{k}{\textcolor{red}{0}}{\cs{k}y^{k}}, centered at $y=0$. We leave it to you to verify that applying \refer{cor}{Interval} to this new series leads to the following generalization to arbitrary power series: \begin{theorem}\label{thm:Interval} The convergence set of a power series centered at $x=a$ \begin{equation*} I=\setbld{x\in\Reals}{ \infsum{k}{\textcolor{red}{0}}{\cs{k}(x-a)^{k}}\text{ converges}} \end{equation*} is an interval (open or closed or half-open) whose midpoint is $a$. The possibilities are \begin{description} \item[$\boldsymbol{R=0}$] $I=\single{a}=\clint{a}{a}$: The series converges at $x=a$ and diverges if $x\neq a$. \item[$\boldsymbol{0R$; convergence is uniform on \clint{a-r}{a+r} for every $rR$. Convergence at the two endpoints, $x=a\pm R$, is not determined: depending on the series, it can converge conditionally, converge absolutely, or diverge at $x=a+R$ and (independently) at $x=a-R$. \item[$\boldsymbol{R=\infty}$] The series converges absolutely at every $x\in \Reals$, uniformly on any bounded interval. \end{description} \end{theorem} The number $R=\sup I$ is called the \textbf{radius of convergence} of the series \infsum{k}{\textcolor{red}{0}}{\cs{k}(x-a)^{k}}. \refer{prop}{FindR} and its variants apply verbatim for finding this radius. \end{document}