% !TEX root = Coeur.tex \chapter{Intervals}\label{lect:Intervals} \section{Absolute Value}\label{sec:abs} The fact that negation reverses inequalities leads us to the following \begin{definition}\label{dfn:abs} The \deffont{absolute value} of any number $x$ is defined to be \begin{equation*} \abs{x}=\max\single{x,-x}. \end{equation*} \end{definition} That is, the absolute value of any number is either the number itself or its negative, whichever is higher: \begin{equation*} \abs{x}= \begin{cases} x & \text{if }x\geq0, \\ -x & \text{otherwise}. \end{cases} \end{equation*} Thus, the absolute value of $x$ is a non-negative number, which expresses the length of the interval with endpoints $0$ and $x$. This can also be interpreted as the \deffont{size} of the number $x$. We shall take some care to distinguish saying that $x$ is \emph{less} than $y$--or $y$ is \emph{higher} than $x$ ($x](-1,0)(2,0) % \psline[linestyle=dashed](1,0)(2,0) \uput[u](-1,0){$a$} % \uput[u](1,0){$b$} \end{pspicture} } \subfloat[\lopint{-\infty}{b}]{ \begin{pspicture}(-2,-0.5)(2,0.5) % \psline[linestyle=dashed](-2,0)(-1,0) \psline[linewidth=1.5pt, arrows=<-*](-2,0)(1,0) \psline[linestyle=dashed](1,0)(2,0) % \uput[u](-1,0){$a$} \uput[u](1,0){$b$} \end{pspicture} } \subfloat[$\opint{-\infty}{\infty}=\Reals$]{ \begin{pspicture}(-2,-0.5)(2,0.5) % \psline[linestyle=dashed](-2,0)(-1,0) \psline[linewidth=1.5pt, arrows=<->](-2,0)(2,0) % \psline[linestyle=dashed](1,0)(2,0) % \uput[u](-1,0){$a$} % \uput[u](1,0){$b$} \end{pspicture} } \caption{Unbounded Intervals} \label{fig:unbdint} \end{center} \end{figure} %\section*{Exercises for Lecture 1} %\addcontentsline{toc}{section}{Exercises} \LectExHead \begin{enumerate} % \item Show that if $m\in\Nat$ then $m^{2}$ is even if and only if $m$ is even. % \textit{Note that there are two things to prove:} if $m$ is even, then so is $m^{2}$, % and if $m^{2}$ is even then $m$ is even. \item Each of the following statements is true whenever all the letters represent positive real numbers. For each statement, either give an example (involving some negative numbers) for which it is false, or prove that it is true for \emph{all} real numbers: \begin{enumerate} % \item\subfixtwoacross[2.0in] {If $a\recip{b}$.}% % { If $a-b$,}% \item\subfixtwoacross[2.0in] {$\abs{a-b}\leq\abs{a}+\abs{b}$.}% {$\abs{a-b}\geq\abs{a}-\abs{b}.$} \end{enumerate} % \item Suppose $0 0$}% {$\fofx\leq 0 $}% {$\abs{\fofx}\leq2$}% \item{$\abs{\fofx}>2 $} \end{enumerate} \end{enumerate}