[Mac OS X TeX] pdfscreen example; with overlay and footer

Troy Goodson Troy.D.Goodson at jpl.nasa.gov
Wed Nov 28 12:22:21 EST 2001

For the benefit of other novice users here, the following is how I got pdfscreen to work making slides the way I needed them.  It may help someone else, so here it is:

there are two other files that go with this one:

a couple of other notes: 

* I had to set the footers in the first slide environment
* When I reset a footer with \cfoot, it affects the previous slide


\renewcommand{\headrulewidth}{0mm} % fancyhdr
\renewcommand{\footrulewidth}{0mm} % fancyhdr

% I don't like alphabetic footnote-marker symbols...

% next 3 lines from pdfscreen example, slide.tex
\margins{1.5in}{1.5in}{.5in}{.5in} %left,right,top,bot

% my common definitions
\newcommand{\deltav}[1]{$\Delta V#1$}
\newcommand\degrees[1]{\ensuremath{#1^\circ}} % for degrees symbol
% my uncommon definitions
  \begin{center}\boldmath\textbf{\Large#1}\end{center}\hrule depth .3mm}

% next 2 lines: these adjustments put the footer where I want
% it and keep the main text centered on the page.  This could
% screw something else up, but it works for me ;)
\headsep .3in
\textheight 6.84in

\sffamily % I don't like serifs on slides
\pagestyle{fancy} % for fancydr package

\overlay{friburg_template} % typical engineer's overlay
% available at <http://www.csun.edu/~kg46825/troy/friburg_template.pdf>


% I don't know why it seems I have to setup the footer in the
% first slide, but this what I found to work
\lfoot{\colorbox{white}{\bf\sffamily\Large Nov. 30, 2001}}
\rfoot{\bf\boldmath\sffamily\Large \colorbox{white}{Navigation Algorithm Design}\\ \colorbox{white}{and $\Delta V$ Error Analysis}}
\cfoot{\colorbox{white}{\bf\sffamily\Large C-\thepage}}

	Navigation Algorithm Design and $\Delta V$ Error Analysis}
Troy Goodson

\slidehead{ Overview }
	\item SOI characteristics
	\item \deltav{_{SOI}} for delays
	\item Navigation's algorithm design
	\item Deterministic errors
	\item Statistical errors
	\item Open issues

% this slide has text on the left and a figure on the right
\slidehead{ Using trapezoidal integration instead of adaptive step-size }
	\item Trapezoidal integration error bound is $(Nh)\frac{h^2}{12}f^{''}_{max} \approxeq 9 \times 10^{-10} km^2/s^2$
		\item $(Nh)$ is about 96 minutes
		\item $h$ is one RTI (1/8 sec)
		\item $f$ is $(\vec{V}\cdot\vec{a})$, so $f^{''}_{max}$ is roughly $12 \times 10^{-11} km^2/s^5$ 
	\item $\frac{9 \times 10^{-10} km^2/s^2}{17  km^2/s^2}  \approxeq 5 \times 10^{-11}$ at one RTI (8 steps per second), which bounds the plot to the right.
% available at <http://www.csun.edu/~kg46825/troy/trapz_error_steps.pdf>


\slidehead{Simplifying the Computation of SOI's $\Delta E$ (alternate)}

% I don't know why changing the footer within this slide environment
% affects the previous slide, but it does...
\cfoot{\colorbox{white}{\bf\sffamily\Large C-\thepage (Appendix)}}

\item The change in orbital energy for a two-body conic:
\[ \Delta E (t) = \int_0^t \vec{V}_{w/SOI}(\tau)\cdot\vec{a}_{SOI}(\tau) d\tau \]
\item Assume that the influence of $\vec{a}_{SOI}$ is small enough to be linear
\[ \vec{V}_{w/SOI}(t) = \vec{V}_{no-SOI}(t) + \int_0^t \Phi (t,\sigma) \vec{a}_{SOI}(\sigma) d\sigma
\item Throw out second-order terms to arrive at the approximation
\[ \Delta E (t) = \int_0^t \vec{V}_{no-SOI}(\tau)\cdot\vec{a}_{SOI}(\tau) d\tau + \underbrace{\int_0^t \int_0^t \left[ \Phi (\tau,\sigma) \vec{a}_{SOI}(\sigma)\right] \cdot\vec{a}_{SOI}(\tau) d\sigma d\tau}_\text{second-order; throw away} \]



To UNSUBSCRIBE, send email to <info at email.esm.psu.edu> with
"unsubscribe macosx-tex" (no quotes) in the body.
For additional HELP, send email to <info at email.esm.psu.edu> with
"help" (no quotes) in the body.
This list is not moderated, and I am not responsible for
messages posted by third parties.

More information about the MacOSX-TeX mailing list